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Beyond eliminating the critical slowing down, multigrid algorithms can also 
eliminate the need to produce many independent fine-grid configurations for 
averaging out their statistical deviations, by averaging over the many samples 
produced in coarse grids during the multigrid cycle. Thermodynamic limits can 
be calculated to accuracy e in just O(e -2) computer operations. Examples 
described in detail and with results of numerical tests are the calculation of the 
susceptibility, the a-susceptibility, and the average energy in Gaussian models, 
and also the determination of the susceptibility and the critical temperature in 
a two-dimensional Ising spin model. Extension to more advanced models is 
outlined. 

KEY WORDS: Multigrid; Gaussian model; Ising spin model; XY model; 
Monte Carlo; thermodynamic limit; coarsening by approximation. 

1. I N T R O D U C T I O N  

The aim in statistical physics is to calculate various average properties of 
configurations governed by the Boltzmann distribution. This is usually done 
by measuring these averages over a sequence of Monte  Carlo iterations. 
Unfortunately,  such processes tend to suffer from several independent  
inefficiency factors that multiply each other and thus produce very expensive 
computations.  

The best known of these inefficiency factors is the critical slowing down 
(CSD). This is the phenomenon,  typical to simulations of critical systems, 
that with the increase in lattice size there also comes an increase in the 
number  of Monte '  Carlo passes over the lattice needed to produce a new 
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configuration which is statistically "useful," i.e., substantially independent 
of, or only weakly correlated to, a former configuration. Considerable 
efforts have been devoted to overcome this difficulty. For simple enough 
cases with real-state variables and at most mild nonlinearities, a general 
method to eliminate CSD is by classical multigrid methods, properly 
adapted. (Three different adaptations were introduced in ref. 14, in w of 
ref. 6, and in ref. 8. For an introduction to classical multigrid, see Sections 
1 and 2 in ref. 5.) For models with severe nonlinearities or discrete variables, 
such as the ~b 4 or Ising spin models, a number of publications report 
on simulation techniques, based on the Swendsen-Wang 1~8~ stochastic 
clustering technique that partially 18'~8~ or completely ~3'~c~2'~91 eliminate 
CSD (see surveflTI). This means that in a work just proportional to the 
number of gridpoints, a new, substantially independent configuration can 
be generated. 

Optimal as this result is, other, no less important factors of inefficiency 
still remain intact. To calculate a thermodynamic quantity to a certain 
accuracy a, one needs to produce O(a'-e 2) essentially independent con- 
figurations to average out the deviation exhibited by each of them, where 
a denotes the standard (i.e., the L2 average) deviation. Also, the size of 
the grid must increase as some positive power of e ~. The main purpose of 
the present article is to show that multigrid techniques may overcome 
these additional inefficiency factors as well by introducing more statistical 
measurements at coarse levels and by other means, such as domain 
replication. (These techniques were first described in Appendix B of ref. 1.). 
More directly, what we intend to demonstrate below is that the multigrid 
structure can be used for measuring meaningful thermodynamic quantities 
in an optimal computational time. 

Namely, we will show that thermodynamic limits (quantities obtained 
at the limit of infinie grids) can be calculated to accuracy e using only 
0(5 -2) computer operations. This is just the same order of complexity as 
needed to calculate, by statistical trials, any simple "pointwise" average, 
such as the frequency of "heads" in coin tossing. This means that in 
addition to eliminating the CSD factor, multigrid algorithms may also 
eliminate the "volume factor," which is equal to the total number of sites 
in the lattice. Both factors multiply the statistical factor (e -2) in the 
operation count of conventional algorithms. 

Stated differently, what we will show is that the multigrid algorithm 
may effectively produce an independent sample in just O(l)  computer 
operations. 

Our prime examples here will be the calculation of the susceptibility, 
the a-susceptibility (an approximation to the XY model susceptibility), and 
the average energy in the Gaussian model, and the susceptibility and the 
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critical temperature in the two-dimensional Ising model. These cases are 
ideal for developing, testing, and demonstrating the new multilevel techni- 
ques, because of their simplicity and because analytical solutions are 
known and can be used for comparing the results and understanding the 
behavior of the numerical processes. 

For the one-dimensional Gaussian model it is shown in Section 2 that 
the susceptibility and the a-susceptibility (both at the limit of vanishing 
meshsize or infinite grid), as well as the average energy per degree of 
freedom (on arbitrarily large grids), can each be calculated to a relative 
accuracy e in less than 10e -2 random number generations (independently 
of the size of the grid). In two dimensions (cf. Section 4.1 ), the calculation 
of susceptibility required less than 40e-2 random number generations, even 
for cases of strongly discontinuous coupling coefficients. It is also shown 
that the optimal multigrid algorithms for calculating susceptibility and 
energy cannot be the same; their "cycle index" must differ. 

The generalization from the Gaussian to other models, with con- 
tinuous state but not quadratic Hamiltonians, is not straightforward, but 
possible. The general approach is outlined in Section 4.3. An important 
feature is that it may be used for a direct and simple computational 
derivation of macroscopic dynamics for the model at hand (Section 4.4). 

It is not clear whether for discrete models (or continuous models 
exhibiting a discrete-like behaviour, such as 44) optimal computations of 
thermodynamic limits [i.e., obtaining accuracy e in O(e -2) operations] 
is always possible. As an example, we discuss in detail calculations with 
the two-dimensional Ising spin model. It is shown that the configurations 
produced within one multigrid cycle by stochastic freezes/deletions of the 
Swendsen-Wang type depend on each other in such a way that not much 
can be gained by introducing statistical measurements at coarse levels. 
Nevertheless, the results indicate that it may still be possible to calculate 
the thermodynamic quantities, such as the critical temperature, in 
optimal [O(e-2)]  time. Moreover, it is shown that a more sophisticated 
(three-spin) coarsening, not of the Swendsen-Wang type, produces much 
less dependence within the multigrid cycle, making it possible to benefit 
much from making many measurements at its coarse levels. 

2. O N E - D I M E N S I O N A L  GAUSSIAN MODEL: FAST 
CALCULATIONS OF T H E R M O D Y N A M I C  QUANTITIES 

A multigrid algorithm for simple continuous-state models, such as the 
Gaussian model, has been described by us in ref. 6 and independently by 
Goodman and Sokal (8) and by Mack. (~4) The three approaches are not 
the same: while Mack and we use linear interpolations, Goodman and 
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Sokal employ constant interpolation (blocking); and while Goodman and 
Sokal and we produce independent coarse level dynamics, Mack uses the 
"unigrid" approach (calculating moves of all scales on the same fine grid). 
In the present work we show that our rnultigrid Monte Carlo approach 
(unlike those of Mack and Goodman-Sokal) can be used not only for 
eliminating the CSD, but also for accelerated calculation of averages, 
especially those which depend on large-scale fluctuations. Thermodynamic 
limits can be calculated to accuracy e in just O(e-:) computer operations. 

The outline of this section is as follows. In Section 2.1 we use Fourier 
analysis to calculate in closed form some thermodynamic quantities. 
Analogous quantities on finite grids are introduced in Section 2.2. In 
Sections 2.3 and 2.4 we describe an extremely efficient multigrid algorithm 
for evaluating the discrete susceptibility and approaching its limit for zero 
meshsize. Some remarks on parallel processing are briefly given in Section 2.5 
and numerical tests are reported in Section 2.6. Similar techniques and 
tests are reported in Section 2.7 for another type of susceptibility, the 
"c-susceptibility," designed to approximate the susceptibility of sigma 
models in the limit of vanishing temperature. The optimal computation of 
the average energy per degree of freedom is described in Section 2.8. More 
detailed description of all the derivations and numerical tests can be found 
in ref. 7. 

2.1. Continuous Case 

To facilitate theoretical analysis of the algorithms, we treat the 
constant-coefficient case. But the same algorithms have been used for much 
more general situations, with a similar efficiency. 

The Hamiltonian associated with the continuous case is 

a~(u) = J- ~ u-,dx (1) 

O<~x<.<.L. where u=u(x) is a function (configuration) defined for 
Homogeneous Dirichlet boundary conditions, u(0)= u(L)= 0, are used for 
definiteness, though others could serve as well. Consequently, a general 
configuration u(x) can be expanded by 

u(x) = ~ cj sin(jnx/L) (2) 
j = t  

where the Fourier coefficients cj are real. By substituting (2)into (1) one 
gets 

~--- R ' 2  

t3) 
j = l  
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The magnetization is given by 

M ( u ) = l  f : u ( x ) d x =  2 Z * ~  
7zi=j j 

(4) 

where Z*, here and below stands for a summation over odd integers. As 
the probability density of each configurations u is given by the density 
function of the Boltzmann distribution 

P( u ) = e -'rl'~/r/Z(T) (5) 

straightforward calculations of the average magnetization (M>,  suscep- 
tibility <M- '>-<M>- ' ,  and energy (Jt~> can easily be made using the 
above Fourier expansion, leading to the following results: 

<M> = 0  (6a) 

4LT ~ ,  1 
<M2> - <M>-~= <M-'> =_--ST- L ~ (6b) 

rc j = l J  

T ~ 
= )-" 1 = o r  (6c) 

Although the Hamiltonian is not bounded, its differences associated with 
changing any cj (or any discrete degree of freedom, such as those defined 
in Section 2.2 below) are well defined, hence it yields these well-defined 
statistics. 

2.2. Discrete Case 

In order to measure such statistical averages numerically, it is 
necessary to discretize the system. On a grid with meshsize h = L/N, the 
discretized Hamiltonian ~,(u), approximating (1), can be written as 

1 u 
~h(u)--~ ,~'..=, [u(xi)-u(xi_ ,)]z (7) 

where xi = ih (0 <<. i <~ N) are the gridpoints. For the simplicity of the multi- 
grid algorithm (see Section 2.3) we have assumed N =  2*; the general case 
could, however, be calculated as well by handling the near-boundary points 
differently. Assuming again U(Xo)= u(xu)= 0, a general grid configuration 
can be represented by 

N - I  

u(xi) = Z ci sin(jrtxi/L) (8) 
i =  I 
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leading together with (7) to 

Jt~h(u) = ~ -  j~= c 7 sin-' \ 2L / (9) 

The discrete magnetization is given by 

h ~ u(xi) h ~_.l cos[flrh/.(-2L)] 
mh(u)=ti=o =L j~=l C J ~  ( 1 0 )  

By using the probability distribution (5), where ~,(u)  replaces #t~(u), one 
can derive 

<M,,> = 0  ( l l a )  

Th 4 ~ l, cos2[jrch/(2L ) ] 
(Mh) = ~  J=' sin4[flzh/(2L)] ( l lb )  

( ~,> = T (N-  1)/2 (1 lc) 

As N ~  (with fixed L, hence h ~ 0 ) ,  which is called here the 
thermodynamic limit, the results of the discrete case tend to those of the 
continuum. ( M h )  exhibits a discretization error of O(h2). More precisely, 
Taylor expansion of each term in ( l l b )  and comparison to (6b) yields 

Th'- ~ . 1  
( M ~ , ) - - ( M 2 )  3~-~j~ ,  j ~ + T L O ( N - 3 )  ( l ld )  

where terms with j >  17/2 are omitted from both (M~> and (M2) since 
they clearly have only TLO(N -3) total contribution. From (1 ld) it follows 
that the relative discretization error I(Mj 2, ) - ( M  2 >I / (M 2 > is O(h2/L2). 
Clearly, by using a pth-order discretization, this relative error can be 
further reduced to O(hP/L"). As will be explained later, the algorithm will 
not necessarily actually provide this O(hP/L p) accuracy for any given 
gridsize, as this may turn out to be wasteful when statistical errors are 
taken into account as well. Instead, it will be constructed so as to keep 
the number of operations optimal with respect to the overall produced 
accuracy. The details of the algorithm are given next. 

2.3. Description of the Multigrid Cycle 

Consider the following generalized Hamiltonian, which includes an 
additional external magnetic field of density ~i at gridpoint x~: 

1~ N-t 
~,,(u)=~ (u,-u,-,) ~+h Z ~,u, (~2) 

i =  1 i =  1 
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where ui = u(xi). On the given (the finest) grid, ~b i = 0 is actually prescribed, 
but the more general form is needed for the algorithm recursion. 

The coarse grid with meshsize H = 2 h  is constructed by taking 
every other fine-grid point: see Fig. 1. The coarse-grid function u " =  
(U"o .....  u ;  ..... " um~ _) describes a displacement of the fine-grid function 
u h=(u0 ..... u,. ..... uu); i.e., it modifies the latter through interpolation and 
addition: 

uh= ffh + I~u u (13) 

where fiJ' is the fine-grid configuration at the stage of switching to the 
coarse grid and I~ denotes interpolation from grid H to grid h (we will 
use the linear interpolation, which is optimal here; see conclusion C in 
Section 2.4). 

The fine-grid Hamiltonian ~h(u h) resulting from that interpolation can 
be written as follows: 

~l,(ffh + I~U") = 9~h(~ h) + ~ ( U " )  

where Jgh(ff h) is given by (12) and YgH(U n) is 

with 

1 N/2 
a t . ( . ' , )  = -~ ,~= (u 7 - u;_ , )2 + 14 

- t i  ~ h  ~ h  
(jHt= - u i -  2 + 2ui --ui+ 2 

2h z 

N / 2 -  1 

E ~ f u ~  
I = 1  

(14) 

(15) 

+ ffl'_,+2~b~'+~b~'+, I =  =1 ..... ~ - - 1  (16) 
4 

representing fine-to-coarse induced field-like terms. These coarse terms are 
calculated from the details of the fine-grid configuration at coarsening and 
are fixed throughout the processing on the coarser level. The variables of 
the coarse grid u~ are initially set to zero, corresponding to zero initial 
displacements. 

Notice that, having calculated the field ~b M once for all, one calculates 
-Y{'a directly in terms of the coarse-grid configuration ut~; there is no need 

0 1 2 "  i -2  i.-I i. i+! i+2 N 

0 1 I-I  I I+l N 
2 

Fig. 1. Fine-grid points are denoted by �9 and coarse-grid points by x. 
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to perform explicitly (14) in order to compute energy differences associated 
with changes in u n. One can therefore run a long Monte Carlo process 
with ,,~ffn before explicitly updating u h by (13). 

The entire algorithm can be described by a sequence of multigrid 
cycles for the finest level. A cycle for any given ("current") level is 
recursively defined by the following five steps. 

1. vl Monte Carlo sweeps are first made on the current level. Then, 
if this level is the coarsest, go to 5. 

2. The next coarser level is created from the current one by determin- 
ing the coarse field-like terms (16). 

3. ~, multigrid cycles for the coarse level are performed. (~ may 
change from one cycle of the current level to another in some 
periodic manner. The O, cle index is the average value of ~, and for 
convenience it will also be denoted by 7. Thus ~, need not be an 
integer, and may be smaller than 1.) 

4. Update the current level by performing (13). 

5. Additional v 2 Monte Carlo sweeps are finally made on the current 
level. 

The Monte Carlo sweeps are performed by changing each variable in 
its turn randomly according to its associated distribution, regarding its 
neighbors as fixed. 

The values of vl, v_,, and 7 are discussed below. 
The described cycle, even with ~ = 1 (which is called a V cycle), would 

generate a new configuration substantially independent of the precycle one 
in a work just proportional to the number of gridpoints; it would thus 
eliminate the critical slowing down. By the term substantially independent 
configuration we mean that the correlation between any quantity of interest 
in the initial arbitrary configuration and in the one produced after k cycles 
decays like e -*/~, where r, the cycle autocorrelation time, is independent of 
the lattice size N. In fact, r is very small, so there is almost no correlation 
between any quantities before and after even one cycle. 

The crucial issue, however, turns out to be different; it is addressed 
next. 

2.4. Fast Sampling of Susceptibi l i ty 

Any observable which is bounded as h ~ 0 [e.g., magnetization and 
susceptibility, but not energy; see (6c)-] must be dominated by contribu- 
tions from large-scale fluctuations flow-frequency Fourier components; cf., 
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e.g., (6b)]. The main issue of the Monte Carlo simulation is therefore to 
sample quickly as many such fluctuations as possible. For this purpose a 
cycle index y substantially larger than 1 may be used, and averages will be 
calculated over as many measurements as one could make within each 
cycle, especially at its coarsest level stages. 

Consider, for instance, the calculation of ( M 2 ) .  Observe first that 
M,, can be evaluated on any level. Indeed, denoting by fit, the fine-grid 
configuration at coarsening, (10) and (13) imply that 

((t" ~ +--~ N/22"~ ut (17) h _,h  2h, _ h  -h 2t7 
U i M,, =-~ i = O  -l-12hU ] i - - L  i=o I=O 

Employing this recursively, one gets that when working on level I, if its 
current configuration is u h', then the (fine-grid) magnetization correspond- 
ing to it is 

/ - - I  

Mh = ~ fflh, + Mh, (18) 
i = 0  

where generally 

hJz ' 
hj=2Jh' MJ'i='-L z ut'  L t ut 

and fib, is the j th  level configuration at the stage of switching to the next 
coarser level. Thus, many__.measurements of M~ can be made within a 
cycle, and their average M~ can be used as an estimate for the discrete 
susceptibility (M~) .  In practice, measurements need be taken only on the 
coarsest level, and in fact after each relaxation sweep there, because only 
that is when substantial changes in Mh are introduced. 

Let us now estimate the number mi of relaxation sweeps the algorithm 
needs to perform on leveli, i.e., on the grid with meshsize hi=2ih 
[ i = 0 ,  1 ..... l=log2(N/2)], in order to achieve relative accuracy e in the 
estimation of the susceptibility. The relaxation sweep on level i strongly 
affects, hence effectively samples, only those Fourier coefficients Ci [cf. (2)] 
for which j=O(L/h i ) .  Hence mi depends on the contribution of these 
components to the deviations in measuring ( M 2 ) .  By (4) 

4 ~ .  CFk 
M - = - ~  L jk (19) 

Lk 

Consider first a term (j, k) in (19) for which both j and k are O(L/h~), 
hence the term is effectively sampled O(m~) times in a cycle. Since the 
standard deviation of the term is 

4 
:~ i/-~ jkrt2 [ ( ( C i  ck )z )  - (C iCk) - ]  - = O ( j - 2 k - 2 L T ) =  O ( h 4 L - 3 r )  
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the standard deviation of its average over the O(m i) samples is 
O(m 7 ~/2h4L- 3 T). There are O(hi zL2) such terms, and their deviations can 
be considered independent of each other, hence their total contribution is 
O(rnT~/2h~L-2T). In case j =  O(L/hi_r) and k =  O(L/hi), where r>~l (i.e., 
hi>hi_r), the term (j,k) in (19) is effectively sampled as follows: in an 
inner loop, for a (nearly) fixed value of c i, the value of ck is averaged 
O(ma/mg_ ~) times, yielding an average whose deviation is of the order 

' 

Then, in an outer loop, the cj in this average is averaged over O(m~_ ~) 
samples, giving results with deviations of order 

=O(m 71/2h~h~ rL- 3T) 

There are O(h~h;gr L'-) such terms, effectively independent, hence their 
total deviation is -~/2 3/2 3/2 - O(mg hi hi_~L "-T), which, when summed over 
integers r>~0, gives again O(m~"Zh~L-2T)=(M'-)O(m~t/2h~L-3). 
Hence the total relative expected error in measuring ( M  s) is 

e= 0 m?l/2h~L 3 + O(hPL-p) (20) 
i 

where the last term added here is the discretization error (cf. Section 2.2). 
The total work (operations) on all the levels is clearly 

! 

W= ~ m~O(L/hi) (21) 
i = 0  

The optimal choice for m~ (yielding either minimal ~ for a given W or 
minimal W for a given et is obtained when &/Om~ + 2~ O W/Omi = 0, which, 
by (20) and (21), yields 

m i  = 2 2 h 8 i / 3  = A328i/3 (22) 

where 2~, 22, and 23 are independent of/. Relation (22) is realized by the 
cycle index Yop, = 2 s/3 ~ 6.35. 

For any fixed cycle index y we have mi=m7% where m is the total 
number of cycles performed. Since h~L ~= O(2i-t), we can perform the 
summations in (20) and (21) and obtain 

e=O re-'l- I _---~z--~,T/~j + 0(2 /p) (23j 
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and 

W = O  m 1 _ 2 7  a (24) 

for any 2 < ), < 26. Actually, by choosing ), and the approximation order p 
so that y is significantly smaller than 22e, the second term in (23} can be 
ignored, yielding W=O(g 2) and m=O(e  27-/). While 7--Yop, indeed 
minimizes We-', the value of W~ 2 [when the second term in (23) is 
negligible] is only 15% different from that minimum for any 4~<y~< 11. 
The four main conclusions from this analysis are therefore as follows. 

A. Cycle index ?,. Generally, any 2 < 1' < rain(64,22p) yields 
W=O(~-2) .  Asymptotically (for ~--*0), the minimal value of W~ 2 is 
attained for ),=28/3"-- 6.35 and values very close to the minimum are 
obtained for 4 <~ 7 ~ 11. In practice (for realistic values oft) ,  the smaller 
values of ~, in this range are better, since for them the influence of the 
second term in (23)is smaller. 

B. Discretization order p. There is little advantage in raising the 
order beyond p = 2. It would allow the use of cycles with larger 7, but the 
dominating coarsest-grid work will remain essentially the same. The only 
slight advantage may be the smaller storage requirement, which is 
O(N) >1 0(~- ,/r) (cf. Section 2.5). 

C. Interpolation order. Linear interpolation (second-order interpola- 
tion) I~h is good enough, as any smooth fluctuation v h has an approximate 
configuration I~h u'-h such that gh+Vh and ~h+I~hu2h have almost the 
same energy. This means that the probability density function for smooth 
movements on the coarse grid is nearly the physical one: the coarsening 
has introduced nearly no statistical bias into such movements. Thus, not 
much could be gained by using interpolation orders higher than 2 (meaning 
[~ higher than linear). Such higher interpolation order would also make the 
coarse-grid Hamiitonian substantially more complicated. A relatively little 
complication, together with almost all the possible gain, can be obtained by 
using third-order interpolation [based either on the function x ( L -  x) or on 
sin(nx/L)] only at the transition to the coarsest grid (which has only one 
degree of freedom). 

On the other hand, the order of the interpolation operator I~h should 
be at least 2, i.e., linear interpolation. This is because the coarser levels 
should accurately sample all the components slow to change under the 
current-level Monte Carlo process. It means that every slowly changing 
configuration u h must have an approximate configuration of the form 
l~l,U 2t', and the two configurations should have approximately the same 
energy. The linear interpolation satisfies this requirement. A border case is 
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the first-order (constant) interpolation Ih2h . For any smooth configuration u h 
approximated by a function u 2/' on a coarse grid with meshsize 2h, the 
energy of l hhu  2j~ is about twice that of u h. Hence, a very smooth component 
on the finest grid, u h, that is effectively changed only on a coarse grid with 
meshsize 2qh, will be represented on that coarse grid by an approximation 
which has an energy 2 q times its own energy. Thus, the changes introduced 
to the amplitude of such an approximation on that coarse grid will be only 
0(2 -q/2) times the typical fluctuations of that amplitude. It follows that 
roughly 2 q visits to that coarse grid will be needed to accumulate a typical 
fluctuation. This means that a cycle index ~, >1 2 must be used to eliminate 
the CSD. Thus, for two reasons constant interpolation is not used. First, 
the work per W cycle (~,=2) is O(Nlog N), so one cannot eliminate the 
CSD. Second, and much more importantly, a whole W cycle is needed to 
produce a single useful measurement, whereas in the algorithm above each 
additional movement on the coarsest grid generates another useful 
measurement. 

D. Number of  cycles m. Asymptotically, to avoid an error ~ dominated 
by the discretization error [the second term in (23)], one should choose 
m<~0((16/~)1). Any larger number of cycles would do useless work of 
reducing the statistical error, because this error is already smaller than the 
discretization error. In practice, for realistic e, the smallest m possible, 
i.e., m = 1, is preferable for minimizing the influence of the discretization 
error. This means that whenever the desired accuracy e is reduced (or the 
available amount of processing W is increased) the work is increased not by 
increasing m, but by raising/, i.e., introducing new finer levels (processed 
very rarely, of course). 

In summary, in computing susceptibility one can use second-order 
discretization and second-order interpolation, any cycle index in the range 
4 ~< ~ ~< 1 l (with some preference for the lower values), and any number of 
cycles 1<<.m<<.0((16/7) ~) (with some preference to m = l ) :  the overall 
computational work will always be dominated by the m7/= O(e -2) work 
on the coarsest grid, with e being the relative accuracy that will be obtained 
in calculating the thermodynamic limit ( M 2 ) .  

2.5. Parallel Processing 

The algorithm described above can use a very high degree of parallel 
processing. On each grid, the Monte Carlo sweeps can proceed simulta- 
neously at half the gridpoints: first the odd, then the even. The calculation 
of the coarse-grid functions (16) can be done at all points in parallel. More 
important, the employment of the 7 different coarse-grid cycles can proceed 
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in parallel to each other, and so can the 1, 2 cycles of the still coarser level, 
etc. So, if an unlimited number [or  actually O(e-z)]  processors are 
available, the algorithm can in principle be performed in O(Iog(1/e)) 
parallel steps. This of course ignores processor communication considera- 
tions, but these place only very mild restrictions here; e.g., the 7 parallel 
multigrid cycles created on each coarsening need no communication to 
each other while running, and only minimal synchronization in collecting 
their results. 

For keeping the total communication, as well as the total storage, 
at minimum, it may be desired to have as small N (number of points on 
the finest grid) as possible. For this, a discretization order p = 4  may be 
preferred, since N= O(e ~/P). Still higher-order discretization would not 
help, since components with O(h) wavelength contribute O(h 4) to <M2>, 
so for an O(e) accuracy a grid must be used whose meshsize is no larger 
than O(/~ 1/4). 

2.6. Numerical Results 

We have tested the multigrid algorithm with ? =  1, 2, 3, 4, 6, 12, and 
24 on grids of size up to 128. Our main aim was to show that for 
appropriate values of ?, optimal behavior is achieved; i.e., the average error 
in the approximation for <M2>, (6b), produced by a multigrid cycle is 
reduced by a factor x/~ upon using a (finest) grid twice finer (N twice 
larger), which increases the work by a factor ?. The susceptibility has been 
measured over just one cycle (m = l ). In that cycle, M}, has been measured, 
using (18), after each relaxation step on the coarsest level, hence__((v~ + v,) ?t 
times altogether. The average of these measurements, M h, is the 
approximation for <M~>, ( l ib) ,  which in turn is also an approximation 
for the desired thermodynamic limit <M2 >. The measured relative error is 
defined as e =  IMj2, - <M2)I/<M2>. We also define ~t to be the expected 
value of # RAN �9 e 2, where # RAN is the amount of work spent per cycle, 
measured by the number of times a random number is generated, which 
(for ~, > 2) is dominated by (v, + v2) ?', the number of relaxation steps on 
the coarsest level. Thus, ct should turn out constant if indeed the algorithm 
solves to accuracy ~ in O(~ 2) operations. For each value of N, ct was 
estimated by averaging e over an ensemble of 2000-5000 runs. 

In Fig. 2 we present a for 7 = I, 2, 3, 4, 6, 12, and 24 vs. (log) system 
size N. As expected, for 2<7-%< 16 the value of a tends to a constant as N 
increases. Also, the cycle with smaller values of "; is slightly more efficient 
(has smaller ct) as expected (see conclusion A in Section 2.4). The graphs 
for ? = 4, 6 are indistinguishable. 
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Fig. 2. Performance in measuring susceptibility. Each curve shows • (measuring computa- 
tional work times the square of the obtained accuracy) as a function of the system size N for 
the indicated value of the cycle index 7- 

2.7. (r-Susceptibility and Its Computation 

We introduced a new type of observable, Z~, defined in the cont inuum 
limit by 

Z,, = (u(x ) )  z d x -  u(x)  dx  

and approximated in the discrete model by 

= , 2  u7 -- ( M 2 )  
~ 0  

The significance of this observable is that it corresponds to the suscep- 
tibility of sigma models at the limit of small fluctuations. Indeed, assuming 
u ; -  ~ to be small, where ff = (Z~= ~ ui)/N, it is easy to see that )2) 

cos u i sin ui - N -  N• 
i I i I 
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the expression on the left-hand side being the susceptibility of the XY 
model with ui as the angle parameters. We therefore call Xo the 
a-susceptibility. 

The observables X, and X] can be computed analytically as follows. By 
the Parseval identity and by (4) 

Hence [using the density function of the Boltzmann distribution (5)] the 
continuous a-susceptibility is 

LT ~ 1 4 L T ~ ,  1 LT 
X,, = ~5~,_ j2 - -  - - =  24 j= 1 ~4 J i j4 

Similar calculations in the discrete case lead to 

T h 2 ~  l 1 Th4U~.',cos2[jnh/(2L)] 
- 8L j=l sin2[jrth/(2L)] - ~  j~=, 

We claim that the same multigrid algorithm which is described in 
Section 2.3 can achieve optimal results in measuring the a-susceptibility 
using appropriate cycle index y. Fourier analysis analogous to that presented 

20 

!5 
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for g (Section 2.4) shows that any 2 <), < 8 yields W= O(e-2). Numerical 
experiments for V = 3, 5 demonstrates that the algorithm solves to accuracy 
e in O(e -2) operations, i.e., ct tends to a constant as N increases. See Fig. 3. 

2.8. Computing Average Energy per Degree of Freedom 

From (6c) and ( l l c )  it is evident that the average energy per degree 
of freedom is exactly T/2 both in the discretization, with any meshsize, and 
in the continuum limit (where that is exactly the average energy of each 
Fourier component). We study now the fast Monte Carlo calculation of 
this quantity. 

Whereas the calculation of susceptibility has been shown to be heavily 
dominated by the coarsest level, the sampling of ~ff presents the other 
extreme. Since most Fourier components are substantially affected by 
relaxation on the finest level, a measurement of ~ should be done after 
each relaxation sweep on that level, and the work should be dominated by 
the finest-grid sweeps. 

Consider the calculation of the average energy on a ~venfixed finest grid, 
with meshsize ho and N =  L/ho intervals. Since ~ ( u ) =  ( ~ 2 / 2 L ) ~ =  l j2c~ 
[see (3)], in each measurement of Yt' each Fourier component contributes 
the following deviation: 

j2~2 
2L [ ( ( c 2 ) 2 ) -  (c2)2]~/2 

which is O(T). For any level with meshsize h;, the number of components 
with wavelength O(hi) is O(h[~L), and their total deviation in each 
measurement is therefore O(h i ~/2L'/2T). If grid h,. is averaged mi t> 1 times, 
this deviation drops to O(m 7 I/2h 7 InLU2T). To obtain relative accuracy e, 
this deviation should be less than e(~eh ) = O(eh o 'LT), hence it is necessary 
that m~>~ O(e-2h~hT~L-~). To guarantee that the deviations contributed 
from all levels do not accumulate unboundedly, the slightly stronger 
condition 

m~ >~ O(~ - 2h~- ~h~ - t L -  ') (25) 

where 6 is any (small) positive number, may be required. 
In particular, mo>~ O(e-2N -~). On the other hand, for the total work 

to be at most O(e -2) it is necessary that Nmo <~ O(e-2), hence 

m0 = O(e -2N-  l) (26) 

Both (25) and (26) can be satisfied by any multigrid cycle with index 
>0.5. The total work will still be O(e -2) and independent of N iff ), <2.  
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Thus,  the energy can be calculated to O(e) relative accuracy in 
O(e -2)  opera t ions  by a mult igr id  cycle with index 0.5 < 7 < 2. Effectiveness 
diminishes as 7 approaches  either endpoin t  (0.5 or  2). The V cycle, i.e., 
7 = 1, is of course the most  convenient.  

Results are presented in Fig. 4. ~ ,  has been measured,  using (14), after 
each re laxat ion sweep on each level. The average of these measurements ,  
~ , ,  is an approx ima t ion  for ()~,'~j,). The measured relative er ror  is defined 
as 

,Ig~h T / T 
i 

The values of cq defined as in Section 2.6, are shown for 7 = 0  (simple 
Monte  Carlo) ,  1, 2, and 3 as a function of the number  mo of sweeps over 
a grid with N = 6 4  points. In all cases v~ = v2= 1 is employed.  F o r  clari ty 
of results, the work in first equi l ibrat ing the system by ten V cycles 
(actually a much smaller  number  would suffice) is not  taken into account  
in calculat ing cc Indeed,  for small e this work should be negligible. 

The results show the expected slowing down for 7=0 and the 
opt imal i ty  of 7 = 1. The work on grid h~=2iho is Nrno(),/2) ~, so the total  
work (or # R A N )  is 2Nm o for y = l ,  Nmolog2N for 7 = 2  and 
Nmo[(7/2) I~ 1 ] / ( 7 / 2 - 1 )  for 7 >  2. Hence, for N = 6 4  the work is 
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Fig. 4. Performance in measuring average energy. Each curve shows ct (measuring computa- 
tional work times the square of the obtained accuracy) as a function of the number m o of 
sweeps over a system with N = 64 points for the indicated value of the cycle index y. 
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2Nmo, 6Nmo, and 20.8Nrn o for "~ = 1, 2, and 3, respectively. The relative 
values of c( seen in Fig. 4 almost exactly correspond to this increase of work 
with ~,, showing in comparison to it only a slight initial decrease (upon an 
initial increase of 7 for fixed mo). The slight decrease is due to the increased 
accuracy of smoother components, which are the only ones to benefit from 
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Fig. 5. (a) Performance in measuring average energy. Each curve shows c( (measur ing  

computational work times the square  of the obtained accuracy)  as a function of I/z, for 
the indicated values of the system size N and the cycle index 7- Ib) Same as in Fig. 4a, but  
differently scaled for different parameters. 
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higher ? (initially; when ? increases further, the additional benefit is 
negligible). 

Generally, for any fixed N, ~ is approximately a constant if ? > 0.5, but 
for ?/> 2 this constant increases with N, being O ( N  l~ ~,/log 2 - ! ) for ? > 2 and 
O(log N) for ? = 2. Figures 5a and 5b demonstrate this. 

3. T O W A R D  O P T I M A L  A L G O R I T H M S  FOR ISlNG MODELS 

3.1. The Mul t igr id  Cycle 

A multigrid Monte Carlo method, based on a stochastic coarsening 
procedure, has been applied to the two-dimensional Ising model, success- 
fully producing a CSD-free sequence of statistically independent configura- 
tions. See refs. 11, 12, and 15 for details; the following is a brief description. 

Consider the ferromagnetic Ising model Hamiltonian associated with a 
spin configuration s: 

#t~ = - ~ J~jsisj (J0->0) (27) 
<i,j) 

where s~ is the (1 or - 1 )  value of the spin at site i and where (i, j )  runs 
over all pairs of nearest-neighbor sites on a square, doubly periodic lattice. 
The basic strategy of the algorithm is the stochastic generation of a new, 
coarser Hamiltonian: 

~ I ( s I ) =  __2--1 1 1 a~isis ) ( J ~ > 0 )  (28) 

with a decreased number of degrees of freedom. Each new "spin" s] is 
actually a block of one or more spins s,,  so that each spin s= belongs to 
one and only one particular block s]. The process of creating the 
Hamiltonian aft ~ from ~ is referred to as going from fine to coarse level, 
or coarsening. Given Yg'~, usual Monte Carlo sweeps can be performed to 
generate transitions in the phase space of the new level. The process of 
restoring finer-scale degrees of freedom, i.e., interpreting each flipped s] as 
a simultaneous flip of all the spins s~ in that block, and then returning to 
work with ,,ug, is called uncoarsening. The description of the coarsening 
procedure and the organization of the coarsening/uncoarsening steps are 
given next. 

The stochastic blocking is performed by scanning the fine-grid interac- 
tions (Jus~sj) one by one, in any convenient order, each interaction in its 
turn being either kept alive or terminated, according to a certain criterion 
(given below). If it is "kept alive," then it actually just stays unchanged. If 
it is "terminated," then with a probability Pii=exp[-Jo.(sisj+ I ) /T]  it is 
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deleted, i.e., the interaction between the spins is omitted from the coarse 
Hamiltonian; and with probability 1 -  P~) it is frozen: its two interacting 
spins are blocked together so that both are flipped simultaneously in all 
subsequent coarser level moves (including still-coarser-level moves subse- 
quently made), until uncoarsening takes place. This particular way of 
terminating bonds has been introduced by Swendsen and Wang, 1~8~ and we 
will denote it SW. Its particular prescription for P~j guarantees detailed 
balance and is also such that a bond connecting antiparallel spins (for 
which sisj = - 1 )  is deleted with probability 1, and thus only parallel spins 
can be blocked together. 

Consequently, by freezing more bonds, blocks of increased sizes are 
created. The potential size of the produced block, i.e., the number of spins 
s, it would include upon freezing a particular candidate bond, has been 
used as a criterion for deciding whether to terminate that bond or keep it 
alive; e.g., by adopting the rule of keeping the bond alive iff its freezing 
would produce a block of more than, say, four spins. 

When the process of stochastic coarsening is completed, all spins are 
grouped into two different kinds of blocks: the disconnected blocks, each of 
which is separated from all others by boundaries of deletions and thus have 
no remaining alive interactions, and the interacting blocks, which still have 
alive bonds between them. The coupling J~ between two interacting blocks 
s~ and s) is calculated by summing up all alive bonds connecting them. 
Starting with J~j= 1 on the fine level, stronger couplings (J~ > 1) may 
appear between the interacting blocks. Thus, a new Hamiltonian ~ is 
constructed. 

The entire process can be repeated recursively: to be effective, the 
Monte Carlo simulation of ~ t  itself includes both conventional Monte 
Carlo sweeps and stochastic coarsening/uncoarsening steps. The next 
stochastic blocking is employed by regarding the blocks s I of the coarse 
level as now being the spins from which the blocks of the next coarser level 
are constructed. Each new, coarser block represents a block of blocks s~ 
and in turn can be referred to as a block of spins s~ of the finest level. 
Repeating this recursively, a sequence of increasingly coarser levels is 
created. Each level k consists of a list of blocks, into which the original set 
of spins s, (which in this notation are also s ~ is uniquely decomposed. This 
list is actually a union of two sublists: the disconnected blocks created at 
all finer levels up to and including the current one, and the interacting 
blocks, denoted s~, which are coupled by the k-level Hamiltonian 

a'vtak(sk) = - - Z  Jij ki sjk (k =0,  1, 2,...) (29) 

Progressing to increasingly coarser levels, the number of alive bonds 
keeps decreasing until at the coarsest level none exists. At that stage all 



Multigrid Algorithms for Thermodynamic Limits 333 

bonds are either frozen or deleted, so the original set of spins s~ is 
completely decomposed into disconnected blocks. 

The entire algorithm can be described as a sequence of multigrid cycles 
for the finest level 0, where a multigrid cycle for any given level k (the 
current "fine" level, assumed not to be the coarsest level) is recursively 
defined as consisting of the following five steps. 

1. vl Monte Carlo sweeps are first made on the fine level, using the 
Hamiltonian (29). 

2. The next coarser level (s k + ~, ~e~ + ~) is created from the fine level 
by the above stochastic coarsening process. 

3. 7 multigrid cycles for the coarse level are performed. If, however, 
this coarse level is the coarsest, do nothing. 

4. Each interacting block s~ § whose final value is different from its 
initial value is translated into flipping all the fine-grid spins s~ 
which belong to it. The spins s k in each disconnected block are 
flipped simultaneously with probability 1/2. 

5. v2 Monte Carlo sweeps are finally made on the fine level. 

We have used cycles with v~ = v2= 1 and ? = 2 .  The parameter ? is 
called the cycle index, and cycles with ? = 2 are called W-cycles. 

The obtained results were in a certain respect very satisfactory: the 
CSD seem to have been completely eliminated, meaning that in a work 
proportional to the gridsize a new, substantially independent configuration 
was created. It was later proved ~'31 that some similar algorithms (in which, 
however, the ordering of bond termination is the same in all cycles) must 
suffer a (very slight) slowing down. This raises the suspicion that the same 
may be true here, although the proof does not strictly apply to our 
described algorithm (which generates different bond termination ordering 
in each cycle: see the above rule for keeping bonds alive). At any rate, the 
practical behavior for all tested gridsizes (up to 128 x 128) exhibited no 
trace of slowness. 

3.2. Dependence of Configurations within a Cycle 

Measuring the desired averages (observables) on the sequence of 
configurations pt'oduced by multigrid cycles on the finest level converges, to 
be sure, faster than measurements on the simple (only single-spin) Monte 
Carlo simulations. But still, as expected, the obtained statistics were slow 
in averaging out the deviation (from the observable average) exhibited by 
each configuration. If a standard deviation tr is contributed by the features 
of some scale, these features have to completely change O((tr/e) 2) times in 
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order to obtain accuracy e. The trouble is presumably mostly related to 
large-scale deviations, because only few samples of them are contained in 
eacll prod~eedconfiguration,  while small-scale fluctuations, one could 
hope, are effectively averaged out in each given configuration. 

The main idea for overcoming this difficulty was to average over 
as many different configurations within each cycle as possible. Take, for 
example, the calculation of the mean of the squared magnetization per site 
( M 2 ) ,  where M2=(1/N)(Z~=I  s,.) 2 and N is the number of spins in the 
finest level. Instead of measuring M 2 once per cycle, compute it each time 
the algorithm visits the coarsest level, that is, 2 t-~ times per W-cycle, 
where I is the number of levels. Moreover (as pointed out in the Appendix 
of ref. I 1), on each visit to the coarsest level it is possible to average 
immediately over all the different spin configurations referring to their 
decomposition into disconnected blocks. More precisely, it is easy to show 
that if there are /2 disconnected blocks consisting of hi, n2 ..... n, spins, 
respectively (where Zf= ~ ni = N), then the average of M 2 taken over the 2 ~ 
equally probable different spin configurations allowed by these blocks is 
given by 

M 2  = 1 P Z._ n2 (30) 

Experiments showed that, disappointingly, near the critical tempe- 
rature the convergence with such many-per-cycle measurements was not 
substantially faster than with once-per-cycle measurements. We have com- 
pared the standard deviation exhibited by the once-per-cycle measurements 
with that of the average of the 2 ' -  l measurements (30) in one cycle, and 
found that on grids up to 128 x 128 the latter was not even half as small 
as the former. Even though this may somewhat improve on extremely large 
grids, not much can be gained in the practical range. 

To understand this behavior, one should first observe that the average 
(30) of M 2 taken over the 2 ~ equally probable configurations is heavily 
dominated by the largest block, hence they are very strongly correlated. 
This is particularly true at the critical (or lower) temperatures, where the 
size of the largest block far exceeds all others. 

Consider next the relations between the 2 t-  ~ coarsest configurations 
obtained within a single cycle. What the experiments show is that they, too, 
are correlated to each other. Each of them, in other words, strongly 
depends on both the finest configuration at which the cycle begins and on 
the first level of stochastic coarsening performed on it. A detailed study 
showed that the reason is that the stochastic coarsening tends to produce 
many more deletions along boundaries (between regions of opposite signs 
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in the current configuration) than elsewhere. As a result, in all subsequent 
coarse-grid calculations, there appears a statistical bias to retain many of 
these boundaries. In particular, the largest block is likely to remain roughly 
the same. 

Thus, in reducing the number of degrees of freedom one loses not just 
fine-scale fluctuations, but large-scale ones as well. 

3.3. Reducing the Dependence 

At first, this strong correlation between scales appears to be a 
necessary property of discrete-state models. But then, a similar situation is 
encountered when constant  interpolation is used even for the Gaussian 
model (cf. Section 5.3 in ref. 5). Since the SW termination resembles con- 
stant interpolation, the question now is whether a better coarsening techni- 
que, capturing some features from linear interpolation, can be devised for 
Ising spins, so as to reduce the dependence between the configurations 
produced within the same cycle, i.e., by the same coarsening. Let us denote 
by Xo = ( M 2 )  the true susceptibility, by ao = ( ( M  2 -  Zo) 2) t/2 the standard 
deviation from Xo of M z of any single configuration, by Xt the average of 
M z for the Hamiltonian a~ '~, and by a j =  ( ( Z i - Z o ) 2 )  1/2 the standard 
deviation of X~ from Xo. The above coarsening, based on the SW termina- 
tion, produced 0 .5ao<a t<Oo .  The question then is whether a better 
coarsening technique can produce aj much smaller than ao. 

One obvious difference between constant and linear interpolation is 
that the latter relates a given variable to two neighbors, not one. Thus, our 
first attempt at a linear-like interpolation is to replace the two-spin SW 
coarsening with the following three-spin coarsening (3SC). 

For simplicity we describe (and have developed and tested) only the 
case of uniform bonds (constant J~j); this is not essential, but introduces 
simplifying symmetries. Denote by /~ = J ~ / T  the uniform thermal binding 
between neighbors. Consider a spin So with two neighbors, s and s+, say. 
The current Hamiltonian has the form 

1 
- a ~  = - [ 3 S o S _  - 1 3 S O S  + . . . .  
T 

where the dots stand for all the other terms of ~r Three other 
Hamiltonians are offered as alternatives: 

1 
~: '~t  = - -OOSoS_--asos+ . . . .  
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1 

1 

= - - a S o S - - O O S o S  + . . . .  

= - b s _  s + . . . .  

The oo value in ~ (~2) means that  So and s ( s+ )  are blocked together.  
Note  that  in ~ the two bonds  between So and its two neighbors  are deleted, 
but a new direct bond  is in t roduced between the neighbors  themselves. One 
selects ~,~ with probabi l i ty  Pi ( i =  1, 2, 3), where P~ + P2 + P3 = 1. To obta in  
detai led balance,  these probabi l i t ies  are taken to depend on the current  
value of s , so, and  s+ according to Table  I - - p l u s  the obvious  rule that  
P i ( - s _  , - S o ,  - S  + ) =  P i ( s  ,So,  S + ) - - a n d  the values  o f  a and b are taken  
so that  

e 2~ = (e2/~--e 2/~)/(2--2p.)  

e 2b : e - 2~/p, 

p ,  is a small positive parameter .  We chose p ,  =0.15,  but  other  values in 
the range 0.05 ~< p ,  ~< 0.2 are perhaps  as good.  

The detailed balance of this, and also that  of SW and other  coarsening 
schemes, is a special case of the following theorem, which generalizes the 
Kandel_Domany~ to) Theorem. 

D e t a i l e d  B a l a n c e  T h e o r e m .  L e t  u d e n o t e  a configurat ion of a 

model,  ~ta(u) its Hami l ton ian ,  and Jt]~(u), Jf.,(u) .... some al ternat ive 
Hamil tonians ,  where the use of the Hami l ton ian  ~,.(u) also means  restric- 
tion of the configurat ions u to a subset where some functionals Fit (u) ,  
Fi2(u), etc., are constant .  (Thus, upon selecting ~,. we also f r e e z e  Fo. ) Then, 
in a Monte  Car lo  process with current  configurat ion ~, replacing ~r by 
~ ( u )  in probabi l i ty  Pi(fi)>~0 mainta ins  detai led balance provided 

P, (~)  = f i (F i j (~ ) ,  Fi2(~),...) e ~'(~)- ~*;(~) (31) 

Table I 

s_ s o s + Pl P2 P3 

+ + + -~(1 - e -4t~) ~(1 - e -4t~) e -41~ 
+ - + 0 0 1 
+ + - I - p ,  0 p,  
+ - - 0 1 - p .  p.  
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where f~ are arbi trary functions and where 

P,(~)  = 1 for any ff (32) 
i 

Note  that  if no real freezing is done with a certain actT,., then the 
coefficient f ,  can only depend on i, and not in any way on ff (which is the 
special case proved in ref. 10). 

ProoL Denote  by P(u  t --+u 2) the probabil i ty of obtaining the 
configuration u 2 at any stage after starting with ~ = u 1. Then clearly 

{1,2} 
P(u I --+ u 2) = ~ Pk(u  I ) P , ( u  I - '+/2 2) (33) 

k 

where Pk(Ut--+ U 2) is the probabil i ty of reaching u 2 from u t under the 
Hamil tonian acgk, and where y.~l,21 sums only over such k for which 
F k j ( u l ) = F k j ( u  2) ( j =  1, 2,...). But for each such k, by (31), 

Pk(U')  = e ,  I, '1- .,~1,,' I -  ~, ~,2~ + *k,,h = e * "  ~- .,r,,2j e k (  u2 --+ u l ) 

Pk( u2 ) Pk(U' --* u 2) 

Hence, by (33), 

p (u  t __+/22) ~-_ p ( u  2 __+ u I ) e.~, I , , l ) -  ,,,v ~uh 

which is the desired detailed balance. II 

We have tested 3SC on an L x L periodic grid by applying the coars- 
ening step for all triplets s _ ,  So, and s+ at grid positions (j, 2 k - 1 ) ,  
(j, 2k), and (j, 2 k +  1), respectively, such that j + k  is even. We compared  
it with an SW coarsening that terminated all the corresponding (So, s ) 
and (So, s+)  bonds. Results at the critical temperature  are summarized in 
Table II. They show that  for 3SC, unlike SW, the ratio a, /Zo decreases with 
L. This means that if the susceptibility is measured on the first coarse grid, 

Table I I  

o" I (7 I 

L Zo cro SW 3SC 

4 12.2 1.8 0.7 
8 41.4 7.2 1.5 

16 139.5 56.8 25.6 4.0 
32 470.2 192.5 81.6 10.6 
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without ever returning to the fine, the average error is small: it tends to 0 
as L increases. 

The observation that has led to the construction of 3SC is that the 
basic flaw in the SW coarsening is the introduction of many deletions, 
usually clustered along well-defined lines: the lines of current boundaries of 
spin alignment. These lines therefore exhibit in o# 'l weakened couplings, 
and are thus likely to persist as boundaries of spin alignment also on 
coarse grids. This means strong correlation between different coarse-grid 
configurations. In 3SC the introduction of such weakened-coupling lines is 
minimized. 

This is just a first attempt; it all may well be done better. Observe that 
the blocks created by 3SC are not necessarily contiguous: the Hamiitonian 

creates a bond between s_ and s+, so that later they may be blocked 
together without having the points in between, such as So, included in the 
block. More general schemes may create blocks that are not necessarily 
disjoint. And so forth: the possibilities are many. 

It is not clear at this point whether the ideal statistical efficiency is 
always attainable. What has been established, we believe, is that it is 
possible to benefit greatly from making many measurements at the coarse 
levels of a multilevel Monte Carlo algorithm, even in discrete-state models, 
if a suitable coarsening scheme is used. 

3.4. Optimal Calculation of Tc 

Even though the SW coarsening is not optimal, as explained above, 
it can still be used in an optimal calculation of certain thermodynamic 
quantities. As the simplest example of such a quantity we chose the critical 
temperature T,. itself. The tests reported below indicate that the above 
muitigrid cycle (Section 3.1) can directly be used for a very inexpensive, in 
fact optimal determination of T,.. More precisely, a sequence of increas- 
ingly better approximations to 7',. is obtained on increasingly larger grids 
by performing only a few cycles on each. To achieve an accuracy e in T,., 
the amount of computational work turns out to be ere-2, where the average 
value of ~ is about t00. 

The algorithm is based on the following measurements. In every 
W-cycle, performed with some temperature T, the algorithm visits the 
coarsest level many times. At each such visit the domain is completely 
decomposed into disconnected blocks, and the ratio r between the number 
of spins in the largest of these blocks and the total number N of spins in 
the lattice is measured. Denote by ~ the average of these r's within one 
W-cycle; clearly 0 < ~< 1. Generally, i f / :< r/(q chosen as described below), 
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then we say that the cycle "indicates" a supercritical temperature: T >  Tc 
(or fl = 1/T< 8c). Similarly, if ~> q, then the cycle indicates a subcritical 
temperature: T <  7",. (or 8 > 8,.). 

This definition of T,. is suitable for fairly large grids if r/ is chosen 
reasonably small. In fact, in the range we have calculated (grids up to 
128 x 128), r/= 0.5 has already proved to be small enough. In principle, for 
much larger grids the definition of 7",. should be modified to allow for the 
fact that ? becomes small near T,., even in the subcritical range. One 
possible modification is to replace r by r', defined as the ratio between the 
length of the largest block and the length L of the domain. This quantity 
r', or its average within a cycle, does not become small near To. [The 
length of a block B can, for example, be defined as 1 + maxs Iil - j~l ,  where 
the max is taken over all pairs of points i = (i~, iz) and j = (j~, j2) such that 
both i and j are in B. For locating Tc on very large grids it is enough to 
calculate the approximate length of the largest block. The coarsening 
process can very inexpensively incorporate a procedure that supplies each 
block B on some coarse level with its approximate mina i~ and maxB i~, 
from which similar quantities can be calculated for all blocks at all coarser 
levels.] In the practical range of our calculations, however, this more 
elaborate quantity r' proved unnecessary. What our simpler procedure, 
based on r, calculates is in fact another thermodynamic quantity, T(q), 
which is the temperature for which the average magnetization per site 
is ~/, i.e., the temperature for which limN_o~ (lY]~=I si[/N)---t/. But the 
difference IT,.- T(0.5)I is below the accuracy one can obtain with grids up 
to 128 x 128, so we had no motivation to run tests with r' instead ofr. 

The experiments show that using an L x L lattice, an interval of roughly 
1/L around 8,. is the best approximation one could get for the critical value; 
i.e., within that interval, the criterion does not correctly distinguish between 
sub- and supercritical temperatures. To get an approximation twice more 
accurate, it is therefore necessary to switch to a four times larger grid: 
2L x 2L. [This observation is of course in agreement with the known critical 
exponent v=  1, i.e., with the correlation length being proportional to 
(T -T , . ) -L]  In order to save work, the algorithm is constructed so that 
much of the search for T,. on any given grid is carried over from smaller 
grids. Since each interval is being further corrected by a larger grid's 
interval, it is not important to check the criterion precisely, and for practical 
purposes it is sufficient to perform only one W-cycle at each temperature. 
In this way, on each of the grids a computational work equivalent to just a 
few Monte Carlo passes is enough for determining T,. to within an interval 
roughly as narrow as can ever be obtained on that grid. The interval will get 
narrower and narrower as the grid becomes larger and larger, until a desired 
accuracy is obtained. The details of the algorithm are as follows. 
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Initialization. Start from a very small r andom grid-- level  0 (say 
4 x 4). Set an initial temperature  To = T ~ = 1/fl ~ (the subscript stands for 
the level, the superscripts for the sequence of temperatures  within each 
level). For  instance, flo ~ = 0, which is an infinite tempera ture  and hence, for 
sure, supercritical. Finally, choose some zlflo > 0, the step in which the tem- 
perature is lowered. (The values used by us are shown in Fig. 6 below.) 

For each level i = 0, 1 .... do the following three steps. 

1. Perform one W-cycle (with [3=[3 ~ to reach near equilibrium 
[erasing in part icular  lower-level periodicity (see step 3 below)] .  

2. Make one W-cycle for each fl~ = flo + k Afli, k = 0, 1 ..... until either 
~ > r / f o r  Afl i>O or ? < q  for zlflg<0 is obtained for some k. If this 
condition is already satisfied at the first step (W-cycle), then 
~fli  ~ - -Af l i ,  i.e., switch the direction of the search. 

3. The fli k for which f has first passed r/will  be denoted fl~ and will 
serve as our final approximat ion  to fl,. on level i. Switch to level 
i +  1: its grid is four times larger (factor two in each direction), 
and its initial configuration is the current configuration on level i 
extended periodically in each di/'ection (exploiting its doubly 
periodic boundary  conditions). Set fl0+ ~ = fli and Afl~+ t = --Afli/2. 
G o  to step 1 with i +  1 replacing i. 

The step ratio Afl~+ ,/Afl~ = - I / 2  is reasonable due to the known ratio, 
mentioned above, between the accuracy obtainable on the corresponding 
grids. If this ratio were not known (i.e., if we did not know that  in this 
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Fig. 6. Each curve shows ~t as a function of the system size L, for the indicated value of zl/i' o. 
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particular model v = 1), the value of Aft;+, would have to be determined 
in an adaptive way, decreasing it faster whenever too many steps were 
required in the former lattice size. 

This algorithm produces an open-ended sequence of increasingly 
better approximations to fl: flo, fl, ..... as long as required or allowed by 
computing resources. 

It should be noticed that the algorithm saves a lot of work by not 
insisting on exact measurements of <?),  or even on exact equilibration, at 
each temperature. It just senses the approximate point at which fl,., the 
critical temperature, is passed. More accuracy will not help, since on each 
grid that point is only fuzzily defined. 

Numerical results. The accuracy e of fli, the ith approximation for fl,., 
is defined by the difference I/~,-/~,1, where fl,.=0.4406868 is the known 
thermodynamic limit. The amount of work, denoted by # RAN, has been 
measured by us by the number of times a random number is generated. 
This effectively counts the work in the Monte Carlo sweeps and in the 
stochastic coarsenings, which are indeed the most time-consuming pro- 
cesses. For an algorithm to be optimal, the quantity ct = ez( # RAN) should 
be roughly constant, or at least bounded. In Fig. 6 the values of ct obtained 
in our experiments are shown for grid sizes up to 128 x 128. Each shown 
value of ct is averaged over an ensemble of about 100 systems. 

The results show that the algorithm is not sensitive, within limits, to 
changes in Aflo: asymptotically, T tends to the correct value of T,., and at 
approximately the same ratect. The behavior of ~ as a function of the 
system size can, however, serve as a good indicator for fixing the stepsize 
.4flo. Large values of Aft0 yield fast localization of the first/~j's, hence small 
values of ct for small L. But these fli's are less accurate, hence more localiza- 
tion work is needed later, thus yielding a typical rise in ct for large L. Too 
small values of Llflo, on the other hand, show much increased values of ct 
for small L. This is explained as follows. A small dflo necessarily implies 
many steps at each grid size. Not only is the amount of work thus 
increased, but so is, on small enough grids, the probability of accidentally 
crossing the threshold r/ too early, implying a bad approximation for T,, 
i.e., a large ct. For larger grids the test becomes more reliable (accidental 
crossing is much less likely), hence a smaller step provides a better 
approximation for T,. and in turn a smaller ~t. 

4. EXTENSIONS 

The multilevel computational methods for eliminating CSD and for 
fast calculation of thermodynamic limits described in the previous sections 
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are being extended to increasingly more complicated models. Some initial 
steps and results are briefly described below. Fuller discussion will appear 
elsewhere. 

4.1. Generalized Gaussian Models 

The algorithm of Section 2 has been extended to the generalized 
Gaussian Hamiltonian in d dimensions, 

~ ( u ) =  fja a(x)j~=, \ ~ /  dx, ..... dXd (34) 

where u=u(x) and a ( x ) > 0  are real functions defined for x =  
(x~ ..... Xd) ~ 12, and f2 is any domain in R d on the boundary of which values 
of u are being prescribed. 

Of special interest are cases where a(x) is strongly discontinuous, 
changing by orders of magnitude from one subdomain to another. Such 
models can no longer be analyzed, nor accelerated, by Fourier methods. 
The usual (point-by-point) Monte Carlo process can suffer in some such 
cases far greater slowness than in the constant-coefficient [ a ( x ) =  1-] case: 
the number of sweeps for producing an effectively independent configura- 
tion may grow proportionately to ho2r, where ho is the meshsize and 
r = max ...... a(x)/a(y). Hence, the total number of sweeps to obtain accuracy 
e for any thermodynamic limit may grow as O(e-2ho2-ar), where ho 
decreases as some positive power of e. 

We have found that in order to reach optimality, the multigrid 
algorithm for such cases must differ from the one described in Section 2, 
mainly in the following two points. 

1. Weighted interpolation. Instead of the simple linear interpolation 
used in (13), weighted interpolation must be used, with the weights in each 
direction being proportional to the size of a(x) extending in that direction. 
[See ref. 1, where this weighted interpolation is described for the energy 
minimization ( T = 0) problem. ] 

2. Variable sampling. The Monte Carlo process should sample more 
frequently regions with smaller values of the coupling a(x). A general rule 
which has been derived for the optimal calculation of susceptibility, for 
example, is that the number of Monte Carlo steps at each gridpoint x on 
each grid with meshsize h should be proportional to a(x)-'-/3 h~2d+ 41/3. This 
rule also dictates the relative amount of sampling on different grids, hence 
the cycle index. 

Such algorithms were implemented for various strongly discontinuous 
cases in one and two dimensions (d=  1, 2). The results were as good as 
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those in Section 2, obtaining accuracy e in approximating the infinite-grid 
susceptibility in less than 40e -2 random number generations. This bound 
on the amount of work is independent of the above ratio r. 

4.2. XY Model s  

Tests have been conducted on the one- and two-dimensional XY 
models, with various approaches to the coarsening process. The work was 
done partly in collaboration with S. Shmulyian, as reported in ref. 16. 

The results show that optimal algorithms (eliminating both the critical 
slowing down and the volume factor) can be constructed, at least in the 
low-temperature range. To obtain such optimality, however, several 
additional algorithmic ideas must be introduced. The main ones, not 
restricted to the XY model, are surveyed below. 

4.3. Coarsening by Approximation 

If the given discrete Hamiltonian ~ ( u  h) depends polynomially on u h 
[e.g., quadratic dependence, as in (7)], and if each u~ is an unrestricted real 
or complex number or vector, then the coarse-grid Hamiltonian ,g~'H(U/~) 
can exactly be derived, yielding again a polynomial of the same order [e.g., 
cf. (15)]. Simple expressions for ,,~n, generally similar in form to Jgh, can 
also be derived in many other cases by using a low-order interpolation I h 
(e.g., first-order, or "constant," interpolation, ~8~ i.e., blocking several 
fine-grid variables so that their changes by the coarse grid, I~u M, are 
identical). However, such low-order interpolations are not optimal, even 
when they yield substantial multigrid acceleration. In the Gaussian case, 
for example, and in many other (e.g., "asymptotically free") cases as well, 
the interpolation must be at least of second order (e.g., linear interpolation) 
to produce the full required mobility on the coarse levels (see item C in 
Section 2.4). 

Second-order interpolation in non-Gaussian models is not a straight- 
forward linear interpolation. The latter would usually produce a result 
outside the given states of the model [e.g., an (X, Y) state such that 
X2+ y2g: 1] and should therefore be corrected [e.g., normalized by being 
multiplied by (X2+ y2)-1/2]. In other models or other representations 
(e.g., the XY model represented in terms of angles), straightforward linear 
interpolation is not well defined (e.g., because adding 2n to one of the 
angles would change the result). The definition of the interpolation should 
then include a deviation from linear interpolation, and contain bifurcations 
(separate formulas for different cases). To maintain detailed balance in 

822/74/I-2-23 
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such cases is usually facilitated by writing ~'~n not in terms of the displace- 
ment function u n, but in terms of the "full approximation scheme" 
(FAS) function f i n = I t ~ h +  u n, where I x is some fine-grid-to-coarse-grid 
restriction operator; e.g., I x can be the simple "injection," defined by 
( I ~ h ) ( x )  = t~h(x) (assuming that each coarse-grid point x also belongs to 
the fine grid). Thus, instead of ~n(un) ,  it would usually be simpler to write 
the coarse-grid Hamiltonian as ~,~n(fn)= ~ , ( f n _ - n - h .  t hu j. Even then, the 
resulting expression of ~en as function of f n  is substantially more 
complicated than ~,(uh). The complexity will be similarly further increased 
upon each additional coarsening. To avoid such compounded complexity, 
approximation methods are used, as follows. 

For definiteness of the description, assume that the model is two 
dimensional and that the Hamiltonian ~ , (u  h) can be written in terms of 
stresses, i.e., differences ~' h u i - u) with i and j being nearest neighbors. Then, 
with a proper second-order interpolation I~, the coarse-grid Hamiltonian 
y~n(f n) = 9~(ffh + i~ ( fn  n~h --IhU )) can be written as a sum ~ n ( f n ) =  
~q Vq(wq), where each V q is a (complicated and possibly bifurcated) 
expression in terms of wq, which is the vector of the three stresses ( o f f  n) 
belonging to the same coarse-grid plaquette. To curb the Hamiltonian 
complexity growth, we want to replace each Vq(wq) by a simpler 
approximate expression vq(|l,q). Various such simplifying approximations 
can be constructed, the only important rules being the following. 

(i) ~/'q(Wq)~ Vq(wq) for any w u, with equality obtained at least at 
one Wq. 

(ii) For a small temperature (large fl), the function VO(wq) almost 
surely has a minimum at a point w* where it is at least twice differentiable. 
Then, for such a temperature, the values of P'q and all its first- and second- 
order derivatives are required to coincide with those of V ~ at wq. 

(iii) ~'~ should retain the topological properties of the model, such as 
2n-periodicity in angle variables, to allow large-scale topological changes. 

Just replacing V ~ by ~'~ would of course introduce statistical errors. 
Instead, to maintain exact detailed balance, the transition is done 
stochastically; namely, the transition is done in probability 

p,(ffh) = e/it v~(,, ~ - ~,.~} 

where wq~ is the value of w~ at the time of coarsening, i.e., for Six = ~h'n'hU. 
When transition does not occur, i.e., in probability P/(t~ h) = 1 -p,(f ih) ,  the 
stresses wq are frozen. By the Detailed Balance Theorem (see Section 3.3), 
this probabilistic choice between the simplifying transition and freezing 
maintains detailed balance. The meaning of freezing any stress w --- f~  - f~' 

. I  
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is, of course, that the neighboring values t~,. n and 6n change henceforth 
(until the uncoarsening stage) simultaneously, keeping their differences 
fixed. 

Rule (i). above guarantees that P, ~< 1. Rule (ii) sees to it that for large 
fl freezing is rare, and the system behaves virtually as in the Gaussian 
case. By increasing the order of approximation [requiring in (ii) more 
derivatives to coincide], freezing can be made even rarer, or remain rare 
even for smaller /3. Such higher-order "approximations increase of course 
the complexity of ~'q, but the complexity per gridpoint remains fixed at 
subsequent coarsening steps: the Hamiltonians retain a fixed general form 
at all coarser levels. 

In Section 2.3 we have seen that the coarse-field ~b n is stochastic: it 
depends on ~J', the fine-grid configuration at the time of coarsening. In 
non-Gaussian models other coefficients in the Hamiltonian depend on ~' as 
well. The variable coefficients thus created imply that the methods 
described in Section 4.1 should be used. In particular, the interpolation at 
coarser levels needs to be weighted proportionately to the coupling strength 
in order to maintain full mobility at the coarsest levels. 

The stochastic simplification of V q to ~'q should actually be made just 
before the next coarsening step (the transition from grid H = 2 h  to grid 
2H=4h) .  Then, wherever freezing occurs, it just corresponds to a special 
choice of the l~n interpolation weights. Since this choice in fact means 
constant interpolation, which yields simpler coarser interactions, the 
simplification of V q to ~',1 need not be done (hence freezing will not occur) 
at certain plaquettes adjacent to the frozen one. 

In case of gauge fields in a higher dimension, the above approach is 
applicable, too, except that "stresses" should be replaced by "topological 
charges around plaquettes," and a "plaquette" should be changed to a 
"cube" of the proper dimension. 

4.4. Domain Replication and Macroscopic Dynamics 

If the fine-grid Hamiitonian uses periodic boundary conditions, instead 
of using cycle index ), (cf. Section 2.3), the domain can be "replicated" 
y times; i.e., the coarse Hamiltonian can be extended periodically to a 
domain 1' times larger. [To extend equally in all d coordinates, 1' = 2'/can 
be chosen. If such ), is too large (cf. Sections 2.4A, 2.7, and 2.8), alternate 
coarsening levels' can use alternate coarsening directions.] No return to 
finer levels will ever be needed if they have already provided enough 
statistics (i.e., if the required number of cycles is 1, as indeed recommended 
in Section 2.4D). This is possible to do exactly when needed, i.e., when the 
size of the domain required to yield accuracy e in some calculation is such 
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that it would contain more than O(e -2) finest-grid sites: the computational 
cost can still be only O(e-2), since the finest level is not employed over the 
entire domain. 

One can make a sequence of such domain replications. At each step 
the domain is first coarsened, then replicated, then a simple multigrid cycle 
is made on the extended domain to reach an equilibrium. (Compare to the 
process in Section 3.4.) In this way one reaches ever larger domains, 
covered by increasingly coarser grids. After sufficiently many such steps one 
may reach Hamiltonians that represent the macroscopic dynamics of the 
system. (The assumption here is that the finest level need not interact with 
grids many  times coarser. Indeed, any movement on such very coarse grids 
is very nearly seen as just a constant shift of the field on the finest scale. 
Such a constant shift does not normally interact with local fluctuations.) 

5. S U M M A R Y  

The calculation of an average quantity Q for an infinite system 
(a "thermodynamic limit" of finite systems) to within some prescribed 
accuracy e by a Monte Carlo process usually requires the following three 
factors of complexity. 

1. First, one should employ a large enough computational lattice 
N x N x  . . . .  N d, whose linear dimension N should usually 
increase as e decreases: N =  N(e); presumably N grows like e-% 
where p is positive. 

2. On this lattice one carries out a Monte Carlo process which 
produces a sequence of configurations, each configuration (from a 
certain point on) appears in its physical probability. Many of these 
configurations add nothing to the statistical measurement of Q, 
because they strongly depend on each other. The process requires 
O(N-') Monte Carlo sweeps, hence O ( N  d§ computer operations, 
to create each new, effectively independent configuration. The 
critical exponent z is of course nonnegative. The critical slowing 
down is the case where z is positive. 

3. It is not enough to create one independent configuration, because 
any such configuration has a deviation from Q. If the standard 
deviation is tr, one would need O(a2/e 2) independent configura- 
tions in order to measure Q to the desired accuracy e. 

Taking these three factors together, one would overall need 

O( N a + = a2/e2) = O( aZ/ez + p~a + --~) (35) 

computer operations in order to obtain an error smaller than e. 
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The purpose of previous multigrid and cluster algorithms has been to 
reduce z as much as possible. The purpose of the muitigrid techniques 
presented in this work is to eliminate the entire exponent p ( d + z )  from 
(35), i.e., to obtain an error smaller than e in only O(tr2/e 2) overall computer 
operations. 

This potential efficiency is especially good news for higher- (e.g., four-) 
dimensional problems: the work increase with accuracy is essentially 
independent of the dimension. 

It is shown above in detail, especially in Section 2, how to achieve 
such optimal results in some simple cases. The possible extension to more 
advanced asymptotically free models is discussed in general terms in 
Section 4. 

The parameters of the multigrid algorithm, such as the cycle index "; 
and the coarse-to-fine interpolation order, depend not only on the involved 
model and its discretization, but also on the measured quantity Q. In 
d-dimensional models and 1:2 coarsening ratio, for calculating quantities 
dominated by large-scale fluctuations (e.g., susceptibility), 2 a < ? ~< 22~ must 
be used, where p is the order of discretization. For quantities dominated by 
small-scale fluctuations (e.g., the energy per degree of freedom), ? < 2 d is 
needed to obtain accuracy e in O(5-2) computational work. 

At least second-order (e.g., linear-polynomial) coarse-to-fine interpola- 
tion is necessary for optimal calculations of asymptotically free models. 

A C K N O W L E D G M E N T S  

We are grateful to R. Benav for useful discussions, and to E. Domany 
and D. Kandel for a basic correction to our method in Section 3.4. The 
research was supported in part by grants No. 1-131-095.07/89 from the 
German-Israeli  foundation for Research and Development (GIF),  
No. 399/90 from the Israeli Academy of Science and Humanities, 
AFOSR-91-0156 from the U.S. Air Force, and NSF DMS-9015259 from 
the U.S. National Science Foundation. 

REFERENCES 

I. R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr., and J. W. Painter, The multi-grid methods for 
the diffusion equation with strongly discontinuous coefficients, SlAM J. Sci. Stat. Comp. 
2:430-454 (1981). 

2. A. Brandt, Multigrid Techniques: 1984 Guide, with Applications to Fluid Dynamics 
[available as GMD Studien Nr. 85, GMD-AIW, Postfach 1240, D-5205, St. Augustin 1, 
Germany]. 

3. A. Brandt, Multilevel computations: Reviews and recent developments, in Preliminary 
Proceedings 3rd Copper Mountain Conference on Multigrid Methodr (April 1987); see also 



348 Brandt et  al.  

in Multigrid Methods: Theory Applications and Super-computing, S. F. McCormick, ed. 
(Marcel Dekker, New York, 1988), pp. 35--62. 

4. A. Brandt, The Weizmann Institute research in multilevel computation: 1988 report, in 
Proceedings 4th Copper Mountain Conference on Multigrid Methods, J. Mandel et aL, eds. 
(SIAM, 1989), pp. 13-53. 

5. A. Brandt, Multigrid methods in lattice field computations, Nucl. Phys. B (Proc. Suppl.) 
26:137-180 (1992). 

6. A. Brandt, D. Ron, and D. J. Amit, Multi-level approaches to discrete-state and stochastic 
problems, in Multigrid Methods, W. Hackbusch and U. Trottenberg, eds. (Springer- 
Verlag, Berlin, 1986), pp. 66-99. 

7. M. Galun, Optimal multigrid algorithms for model problems in statistical mechanics, 
M.Sc. Thesis, Weizmann Institute of Science (1992). 

8. J. Goodman and A. D. Sokal, Multigrid Monte Carlo methods for lattice field theories, 
Phys. Rev. Lett. 56:1015-1018 (1986). 

9. S. Gottlieb, W. Liu, D. Toussaint, and R. L. Sugar, Testing an exact algorithm for 
simulation of fermionic QCD, Phys. Rev. D 35:26tl (1987). 

10. D. Kandel and E. Domany, General cluster Monte Carlo dynamics, Phys. Rev. B 43:8539 
(1991). 

11. D. Kandel, E. Domany, and A. Brandt, Simulations without critical slowing down--Ising 
and 3-state Potts models, Phys. Rev. B 40:330 (1989). 

12. D. Kandel, E. Domany, D. Ron, A. Brandt, and E. Loh, Jr., Simulations without critical 
slowing down, Phys. Rev. Lett. 60:1591 (1988). 

13. X.-J. Li and A. D. Sokal, Rigorous lower bound on the dynamic critical exponent of some 
multilevel Swendsen-Wang algorithms, Phys. Rev. Lett. 67:1482 (1991). 

14. G. Mack and A. Pordt, Convergent perturbation expansions for Euclidean quantum field 
theory, Commun. Math. Phys. 97:267 (1985); G. Mack, in Nonperturhative Quantum Field 
Theory, G. t'Hooft et aL, eds. (Plenum Press, New York, 1988), p. 309. 

15. D. Ron, Development of fast numerical solvers for problems in optimization and 
statistical mechanics, Ph.D. Thesis, Weizmann Institute of Science (1989). 

16. S. Shmulyian, Multilevel Monte Carlo algorithms for spin models, M.Sc. Thesis, Weizmann 
Institute of Science (1993). 

17. A. D. Sokal, How to beat critical slowing-down: 1990 update, Nucl. Phys. B (Proc. SuppL) 
20:55~o7 (1991). 

18. R. H. Swendsen and J. S. Wang, Nonuniversal critical dynamics in Monte Carlo 
simulations, Phys. Rev. Lett. 58:86-88 (1987). 

19. U. Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62:361-364 
(1989). 


